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I INTRODUCTION

In 1996, Y.Imai and K.lseki ( [5],[6],[7] ) introduced two
classes of abstract algebras: BCK-algebras and BCI-
algebras. It is known that the class of BCK-algebras is a
proper subclass of BCI algebras. In 2002, J. Neggers and
H.S. Kim [ 12] introduced the notion of B —algebras
which is another generalization of BCK algebras. Also
they introduced the notion of [ — algebras[13] where two

operations are coupled in such a way as to reflect the
natural coupling, which exists between the usual group
operation and its associated B—algebras. In 2012,
Y.H.Kim [10] investigated some properties of S —

algebras.

The important point in the evaluation of the modern
concept of uncertainty was the paper by Lofti A. Zadeh
[16] that introduced the theory of fuzzy sets. The study
of fuzzy algebraic structures was started with the
introduction of the concept of fuzzy subgroups in 1997,
by Rosenfeld [14].The concept of intuitionistic fuzzy
subset was introduced by Atanassov [ 17] in 1986, which
is a generalization of the notion of fuzzy sets. Fuzzy sets
give a degree of membership of an element in a given set ,
while Intuitionistic fuzzy sets give both a degree of
membership and a non-membership. OG. Xi [15] applied
the concept of fuzzy sets to BCK algebras and got some
results in 1991. In 1993, Y.B. Jun [8] applied it to BCI
algebras. In their paper [9] , the authors introduced the
notion of fuzzy dot sub algebras of BCK/BCI algebras as
a generalization of a fuzzy subalgebra, and then
investigated several basic properties which are related to
fuzzy dot sub algebras. In [2] Al-Shehrie introduced the
notion of fuzzy dot SU-Sub algebras. In [11], K.H.Kim
introduced the notion of fuzzy dot sub algebras of d-
algebras in[4]. In[1] M.Abu Ayub Ansari and
M.Chandramouleeswaran introduced the notion of fuzzy
dot [ — subalgebra of g — algebras.

This motivated us to study the intuitionistic fuzzy dot
S —subalgebra of £ — algebras. In this paper, we
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Introduce the notion of intuitionistic fuzzy dot S — sub
algebras on f —algebras and investigate some of their
properties.

1. PRELIMINARIES

Definition 2.1: BCK —algebra
A BCK-—algebra is a non—empty set X with a

costant ‘0’ and a binary operation *'satisfying the
following axioms

BCKL: {(x*y)*(x*z)}*(z*y)=0
BCK2: {xx*(x*y)}*y=0

BCK3: x*x=0
BCK4: x*y=0and y*x=0= x=y
BCK5: 0*x=0 V x,y,zeX

Definition 2.2: BCl —algebra
A BCl—algebra is a non—empty set X with a

constant ‘0’ and a binary operation “*'satisfying the
following axioms

BCIL: {(x*y)*(x*z)}*(z*y)=0
BCI2: {x#(x*y)}*y=0

BCI3: x*x=0

BCl4: xxy=0and y*x=0= x=y

Definition 2.3: B—algebra
A B-—algebra is a non—empty set X with a costant

‘0’ and a binary operation *'satisfying the following
axioms

Bl: x*xx=0
B2: x*0=0

B3: (x*y)*z:x*{z*(O*y)} Y X VY,z2eX
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Definition 2.4: B —Subalgebra
A non-empty subset S of a B—algebra X is called

a B-—Subalgebra of X if x*yeS for any

X,yeS

Definition 2.5: B—Homomorphism

A mapping f:X —>Y of a B-—algebra X is

called B —homomorphism if

F(x*y)=f0)*f(y)
Note:1: In B —homomorphism

vV x,yeX
f(0)=0

Definition 2.6: S — algebra
A [ —algebra
costant ‘0’ and a binary operations '+' and '-'

satisfying the following axioms
pLl. x-0=x

is a non—empty set X witha

B2 (0-x)+x=0

B3 (x-y)-z=x—(z+y) V¥ x,y,zeX
Example 2.6:
Let X :{O, 1 2, 3} be a set with constant ‘0’ and

two binary operations '+'and '—' are defined on X
with the Cayley table

+ 00 1 2
01012

)
=
[
‘s
[
[—

&
"
=
—
(]

e
el
[
—
=

Then (X,+,—,0) is a f—algebra

Definition 2.7: g — Homomorphism
Let (X,+-0) and (Y,+-0') be two B-

algebras. A mapping f:X —Y is said to be a [ —
homomorphism if it satisfies the following conditions
f(x+y)= 1)+ f(y) and f(x-y)=1(x)-1f(y)

vV Xx,yeX

Note:2: In a g — Homomorphism f(0)=0'

Definition 2.8: Fuzzy Set
Let X be a set of universal discourse. A fuzzy set

4 in X is defined as a function x:X —[0,1]. For
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each element x in X, u(x) is called the membership
value of xin X

Definition 2.9: Intersection of two Fuzzy Sets

If u and u, aretwo fuzzy sets of X then the

intersection  z N, of is defined as

uoand g,

(1, 012, ) (X) = Min { 11, (x), 12,(%)}

Definition 2.10: Union of two Fuzzy Sets
If p and g, are two fuzzy sets of X then the

uoop, of

(1, 0, ) () = Max {11, (X), ,(X)}
In general (Mg )(x)=Min{u(x)/i=123.}

union and g, is defined as

Definition 2.10: Union of two Fuzzy Sets
If u and p, are two fuzzy sets of X then the

Hou,  of
(1, 0, ) () = Max {11, (x), ,(X)}

union and p, is defined as

In general (g )(x)=Max{u(x)/i=123..}

Note:3: If x4 and u, are two fuzzy sets of X
then u, < u, < 14(X) < p,(X)
Note:4: If w4 is a fuzzy set on X, then

() =1 u(x)

Definition 2.11: Direct product of two Fuzzy Sets
If u and u, are two fuzzy sets of X, and X,
respectively.

Then the direct product s xu, of u and g, is
defined the of X, x X

(4% 1) (%, %) = Min {4, (%), 1,(%,)} V(%) €
X1>< X2

as fuzzy  set

Definition 2.12: Level Fuzzy Subset
Let x be a fuzzy set on X. For te[0,1], the set

u ={xeXu(x)>t} is called level fuzzy subset of
u

Proposition 2.13:
If t<t,then 4 cu where 4 and 4 are any
two level fuzzy subsets of

set on X

4 where u be a fuzzy

10
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Definition 2.13: Fuzzy Dot g - Subalgebra of pg-

algebra
Let x4 be a fuzzy set in a B—algebra X.Then u

is called a fuzzy dot p—Subalgebra of X if it
satisfies the following conditions

Lou(x+y) = u(x)ou(y)
2. u(x=y)=u(x)ouly) ¥V xyeX
Example:2.13

Consider the (X,+,-0) where
X ={0, 1, 2, 3}
Define u: X —[0,1] such that
06 if x=0
u(x)=490.7 if x=1
03 ifx=2,3
4 is a fuzzy dot S -—subalgebra of X

S —algebra

Then

Theorem:2.1
Every fuzzy [ -—subalgebra of X

S —subalgebra of X

is a fuzzy dot

Theorem:2.2
If 4 and u, are two fuzzy dot S—subalgebra of

X then g Ny, is also a fuzzy dot S —subalgebra of
X

Corollary:2.2
If  {u/i=123.} be a family of fuzzy dot

S —subalgebra of X then ny, is also a fuzzy dot
S —subalgebra of X

Theorem:2.3
If u, and u, are two fuzzy dot S —subalgebra of
X then the direct product s xu, is defined by

(g, x28,) (%, y) =g, (X) o p,(y) is also a fuzzy dot
S —subalgebra of X x X

Theorem:2.4
Let f:X —>Y be a homomorphism of a g - algebra

of X into a B—algebra of Y .If x4 is a fuzzy dot
B—algebra of Y then the pre-image of u, denoted
by f ' (u)isdefined as 7 {u(x)}=u{f(x)}, ¥xeX
is a fuzzydot S - subalgebra of X

Theorem:2.5
Let f:X —>X be an endomorphism on a f-

subalgebra of X.If x is a fuzzydot S —algebra of
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X. Define a fuzzy set x4 :X —[01]

A, (X) :y(f(x)) VxeX.Then g,
3 —algebra of X

by
is a fuzzy dot

Theorem:2.6 For a fuzzy set A of a B—algebra of
X. Let o, defined by
u, (x+y)=A(X)oA(y). Then A is a fuzzydot S-

be a fuzzy relation

subalgebra of X if and only if x, is a fuzzy dot
S —subalgebra of X x X

Theorem:2.7
Let X and Y be p-—algebras. Let u be a fuzzy

dot g —subalgebra of X xX . Define a fuzzy set
P (1) (x) = u(x,0), Vxe X . Then
dot p —subalgebra of
P(u) of Y by P (u)(y)=w0y) VyeY Then
P, () is a fuzzydot S - subalgebra of Y

P(u) is a fuzzy
X . Also define a fuzzy set

. CHAPTER

Intuitionistic Fuzzy dot g —subalgebras of agf-

algebra

this the of

f —subalgebras of a f-

In section we introduce notion

Intuitionistic fuzzy dot

algebra and prove some simple theorems

Definition:3.1 Intuitionistic Fuzzy Set
An Intuitionistic fuzzy set A over X is an object

having the form A={(x, u(x), 7(X))/x e X} where
u(x): X = [0,1] and y(x): X —[0,1] with  the
condition 0< u(X)+y(X)<1, Vxe X. The numbers

u(x) and y(x) denote, respectively , the degree of
membership and non-membership of the element
X € A. Obviously, when y(X)=1-u(X), V xe X, the

set A becomes a fuzzy set. For the sake of simplicity,
we shall use the symbol A=(uy) for the

intuitionistic fuzzy set A={(x, u(x),7(x))/x e X}

Properties of Intuitionistic Fuzzy Set
IfA= {<Xa #A(X)J’A(X» Ixe X} AN g = {(x, 11,(x), 7,0 x & X}
are any two intuitionistic fuzzy sets of a set X , then
(@. AcB < for all xe X, u,(x)<u,(x)and

74 (X) 27, (X)
(b). A=B < u1,(0) = 2, (x) and 7,(x) = 7, (x)
©. AnB={{x,(z, ", )(X),(7, "7, ) (X))} where

11



TARISET

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

) International Advanced Research Journal in Science, Engineering and Technology

Vol. 3, Issue 6, June 2016

(1, " p1,) () = Min{ z, (X), g1, ()} and
(7, N7 ) (¥) = Max {7, (%), 7, ()}
@). AUB ={(x,(z, v, )X, (7, U7, ) (X))} where
(1, U 11, ) (X) = Max { g1, (x), 1, ()} and
(7, 97) () = Min{y,(x),7,(9)}

Definition:3.2
An Intuitionistic fuzzy set A of a f—algebra X is

said to be an intuitionistic fuzzy dot S - subalgebra
of X if it satisfies the following axioms:

IFDASAL: p(x+y) 2 p(x)o u(y)
IFD fSA2: u(x=y) 2 u(x) )
IFD B SA3: y(Xx+Yy)<y(X)ox(y)
IFD B SA4: y(x—y)<y(X)op(y)
Example:3.2
Consider the B-—algebra X ={0,1,2,3}. Define
X —[01]and y:X —=[0,1] such that
06 if x=0 04 if x=0
u(x) =407 if x=1 & y(x)=4903 if x=1
03 if x=2,3 07 if x=2,3

Then A=(uy) is a IFDBSA of X

Theorem:3.1
Every intuitionistic fuzzy g —subalgebra of X is a

intuitionistic fuzzy dot 3 —subalgebra of X

Proof:

Let A=(uy) be a
subalgebra of X . Then
H(x+y) = Min { (%), ()} = 1(x) © pa(y)

y(x+y) < Max{7(x), 7(¥)} < 7(x) > 7(y)

H(x=y) = Min{ u(x), (y)} = p(X) © pu(y)

y(x=y) <Max{y(x), 7(¥)} < 7(x) o 7(y)

Therefore  A=(u,y) is a a intuitionistic fuzzy dot
p —subalgebra of X

intuitionistic  fuzzy f-

Theorem: 3.2

If A:(,ul,)/l)
intuitionistic fuzzy dot S — subalgebra
ANB is also a intuitionistic

subalgebra of X Proof:

(4, ", ) (x+y)=Min {z (x+Y), 1, (x+Y) }
> Min { (X) o 1,(y), 14,(X) o 14, (y) }
> [Min{44,(x), #,0} Jo[Min{2,(y), 11,(V)} ]

and B=(g,, ) be any two
of X then
fuzzy dot g-

For any x,ye X,
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= (1,0 p,) () o (1,0 1,)(y)
Hence

(e, o, ) (x4 y) 2 (00, ) (X) o (14, 0 1) (y)

(1, 0p,)(x=y) =Min {z, (x=y), 1, (x=y) }

> Min {2,(x) © (), 11,(X) o 11, (y) }

> [Min {11, (X), 1,()} Jo[Min{z,(y), 11, ()} ]

= (a0, ) (%) o (1,0 8,) ()

Hence (1, M) (x=y) 2 (4, 0 i, ) (%) o (1, 08,) ()

(7,07, (x+y)=Max {7, (x+y),7,(x+y) }
< Max {7,(X) o 7,(¥),7,(x) o 7, (y) }

< [Max {7,(x),7,(x)} ]o[Max {7,(y),7,(1)} ]

=(7.07)(x)(r,n7,)(y)
Hence (7, N7, ) (x+Y) <(7,07,)(x) (7, n7,)(Y)

(r.07,)(x=y)=Max {y,(x-y).7,(x-y) }
< Max {7, °7,(¥),7,09°7,(y) }

< [Max {7,(x), 7,0} ]o[Max {7, (y).7,(y)} ]
:(71m72)(x)°(71m72)(y)

Hence(ylmyz)(x—y) S(7/1r\yz)()()o(}/lmj/z)(y)
......... 4)
From (1),(2) and (3), (4)

AnB is also a intuitionistic fuzzy dot £-

subalgebra of X

Corollary:3.2

It A={(ux,7,)/i=123.} be a family of
intuitionistic fuzzy dot f—subalgebra of X, then
u Ny is also a intuitionistic fuzzy dot f-

subalgebra of X

Theorem: 3.3

Let Az(pi,;/l) and Bz(yz,yz) be any two
intuitionistic fuzzy dot £ —subalgebra of X then

(AxB)(x,y)=A(x)oB(y) is also a intuitionistic
fuzzy dot S —subalgebra of X xX

Proof:

Let X=XxX and let p=xpu,, y=yx7,

wlxry) = (3% ) + (v 3, )

12
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=u(X +y,., X +Y,)

= (i) (% +Y %+, )

=t (X +Y)o i (% +Y,)

2 p1,(% ) m, (%) o 1, (¥,) o 11, (y,)
=1, (% )on, (%) o (¥, )o 1, (y,)

=(ﬂ1Xﬂz)(xl’Xz)o(/ulxluz)(yl'yz)
= p(x) o u(y)

y(x+y) =7 {(x. %)+ (v, v,)}
=7(X +Y. % +Y,)
=(y,%x7,) (X +Y, %, +Y,)
=r(x+¥)eor(x+Y,)
SACIDACIDACHADACH
=7,(x) o7, (%) (W) o7, (y,)

=(]/1X}/Z)(Xl,XZ)O()/lxyz)(yl,yz)
=7(x)ex(y)

u(x=y)=u{(x,x)=(y,.y)}
=u(X =Y, % —Y,)
=(xw) (X =Y, % =Y, )
= (X —Y,)ou (x,-Y,)
2 1, (%) o at, (%, ) o 1, (¥,) o 11, (, )
= (%) o, (%) o, (y,) o1, (y,)
= (e % 11, ) (%%, ) o (< 11, ) (¥, Y,)
= u(X) o pu(y)
y(x=y)=r{(x%. %)= (¥ v.)}
=7(X =¥, %-Y,)
=(rx7) (X =Y. % -Y,)
=7 (x-¥)er(x-Vy,)
SACYEACIDACALIACA)
=r,(x)er, (%)er (%) o7, (y,)
= (7 x7) (% %) (7, %7,) (¥, Y,)

=y(X) o r(y)

Hence AxB is also a intuitionistic fuzzy dot g -

subalgebra of X xX

Theorem: 3.4

Let f:X —Y be a homomorphism of a S - algebra
of X into a p-algebra of Y.If A is a
intuitionistic fuzzy dot g —algebra of Y ,then the pre-

image of A, denoted by f (A) is defined as
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fH{AX)} =A{f(X)}, ¥ xeX, is a intuitionistic

fuzzy dot g —subalgebra of X

Proof:
Let  A=(uy) be aintuitionistic fuzzy dot AB-
subalgebra of Y and let x,y e X . Then

{f’l(y)}(x+y):,u{f(x+y)}
=u(f00+f(y))
> u(f(x)ou(f(y))
= {1 ()} { T ()}
Also {f’l(y)}(x—y):y{f(x—y)}
=u(f()-f(y))
> u(f(x)eu(f(y))
={ () { T ()N}
{° (D} y) = {F(x+ )}
=y(f()+f(y))
<y(1(9)er(f(y)
={t ()} {t ()}
Also {17 ()} (x=y)=r{f(x-y)}
=r(f00-1(y)
<y(1(9)er(f(y)
={t () {t ()}

Hence f'(A) is a intuitionistic fuzzy dot AB-
subalgebra of X

Theorem:3.5

Let f:X —Y be an endomorphism on a S —algebra
of X.f A be a intuitionistic fuzzy dot -
subalgebra of X .Define a intuitionistic fuzzy set
uo o X - [0,1] by u(x)= y( f (X)) and

7, - X —)[0,1] by 7, (X):y(f(x)), V xe X .Then

A=(u,,7,)isaintuitionistic fuzzy dot /- subalgebra
of X

Proof:
Let x,y e X. Then

p, (x+y) = u(f(x+y))
= u(F)+1(y))
> p(£(x))ou(f(y))
=, (X) o, (Y)
p, (x=y) = u(f(x=y))
=u(F)-1(y))

Also,

13
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> p( (X))o u(f(y))
=, (X) o, (Y)

v, (x+y)=r(f(x+y))
=r(f)+1(y))
<y(f00)er(f(y))
=7, ()7, (y)

v, (x=y)=r(f(x-y))
=r(f()- 1))
<y(f00)er(f(y))
=7, ()7, (y)

Hence A=(g,,y,) isaintuitionistic fuzzy dot /- sub
algebra of X

Also,

V. CONCLUSION

In this chapter we introduce the concept of
intuitionistic fuzzy dot S — sub algebra of S — algebras

and investigate some of their useful properties. In my
opinion, these definitions and results can be extended to
other algebraic systems also.
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